ToxGen: an improved reference database for the identification of type B-trichothecene genotypes in Fusarium

نویسندگان

  • Tomasz Kulik
  • Kessy Abarenkov
  • Maciej Buśko
  • Katarzyna Bilska
  • Anne D. van Diepeningen
  • Anna Ostrowska-Kołodziejczak
  • Katarzyna Krawczyk
  • Balázs Brankovics
  • Sebastian Stenglein
  • Jakub Sawicki
  • Juliusz Perkowski
چکیده

Type B trichothecenes, which pose a serious hazard to consumer health, occur worldwide in grains. These mycotoxins are produced mainly by three different trichothecene genotypes/chemotypes: 3ADON (3-acetyldeoxynivalenol), 15ADON (15-acetyldeoxynivalenol) and NIV (nivalenol), named after these three major mycotoxin compounds. Correct identification of these genotypes is elementary for all studies relating to population surveys, fungal ecology and mycotoxicology. Trichothecene producers exhibit enormous strain-dependent chemical diversity, which may result in variation in levels of the genotype's determining toxin and in the production of low to high amounts of atypical compounds. New high-throughput DNA-sequencing technologies promise to boost the diagnostics of mycotoxin genotypes. However, this requires a reference database containing a satisfactory taxonomic sampling of sequences showing high correlation to actually produced chemotypes. We believe that one of the most pressing current challenges of such a database is the linking of molecular identification with chemical diversity of the strains, as well as other metadata. In this study, we use the Tri12 gene involved in mycotoxin biosynthesis for identification of Tri genotypes through sequence comparison. Tri12 sequences from a range of geographically diverse fungal strains comprising 22 Fusarium species were stored in the ToxGen database, which covers descriptive and up-to-date annotations such as indication on Tri genotype and chemotype of the strains, chemical diversity, information on trichothecene-inducing host, substrate or media, geographical locality, and most recent taxonomic affiliations. The present initiative bridges the gap between the demands of comprehensive studies on trichothecene producers and the existing nucleotide sequence databases, which lack toxicological and other auxiliary data. We invite researchers working in the fields of fungal taxonomy, epidemiology and mycotoxicology to join the freely available annotation effort.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes

Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analys...

متن کامل

Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins

The aerobiology of fungi in the genus Fusarium is poorly understood. Many species of Fusarium are important pathogens of plants and animals and some produce dangerous secondary metabolites known as mycotoxins. In 2006 and 2007, autonomous unmanned aerial vehicles (UAVs) were used to collect Fusarium 40–320 m above the ground at the Kentland Farm in Blacksburg, Virginia. Eleven single-spored iso...

متن کامل

Enzymatic detoxification of Don in transgenic plants via expression of Fusarium graminearum Tri101 gene

Fusarium graminearum is causal agent of economically catastrophic disease of cereal Fusarium Head Blight (FHB) around the world. In addition to causing a loss of yield, this fungus causes serious threats to humans and animals due to the contamination of grain with the trichothecene mycotoxin. TRI101 gene, a Fusarium spp. gene, encodes an enzyme that transfers an acetyl group to the C3 hydroxyl ...

متن کامل

The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae

Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON) production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol), such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by a...

متن کامل

Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship

A model of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B trichothecene producer Fusarium culmorum was developed based on homology modelling with the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer 6, magnolol 7, and ellagic acid 8, were selected f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017